The articles that have appeared recently about MiHsC and the emdrive make a valid link with the flyby anomalies, but the clearest didactic link would be with the cosmic acceleration that MiHsC also predicts without the need for dark stuff. The following is a simplification for the purposes of explanation:

For Unruh radiation, the lower the acceleration, the longer the wavelength. So, in MiHsC, the universe's inability to support Unruh wavelengths longer than itself, because they would be unobservable, predicts a minimum possible cosmic acceleration. To support this line of thinking, the minimum acceleration predicted by MiHsC (2c^2/HubbleScale) agrees with the observed cosmic acceleration. Now imagine two universes, side by side as shown in the schematic here:

The large universe on the right has a minimum acceleration that is predicted by MiHsC to be 2c^2/BigDiameter. The universe on the left has a minimum acceleration predicted to be 2c^2/SmallDiameter (this acceleration is larger). So, if an object (a photon) goes from the big to small universe (along the red arrow) its acceleration must increase in a new way (driven by apparently new energy from MiHsC). In going from the small to big universe, the minimum acceleration must decrease. In both cases there is a net acceleration towards the small universe which is proportional to: 1/SmallDiameter - 1/BigDiameter. The emdrive is very similar, except now the horizon is given by the shape of the cavity and the small and big universes are the small and big ends of it. Conclusion: the emdrive is an asymmetric universe for its photons.

For Unruh radiation, the lower the acceleration, the longer the wavelength. So, in MiHsC, the universe's inability to support Unruh wavelengths longer than itself, because they would be unobservable, predicts a minimum possible cosmic acceleration. To support this line of thinking, the minimum acceleration predicted by MiHsC (2c^2/HubbleScale) agrees with the observed cosmic acceleration. Now imagine two universes, side by side as shown in the schematic here:

The large universe on the right has a minimum acceleration that is predicted by MiHsC to be 2c^2/BigDiameter. The universe on the left has a minimum acceleration predicted to be 2c^2/SmallDiameter (this acceleration is larger). So, if an object (a photon) goes from the big to small universe (along the red arrow) its acceleration must increase in a new way (driven by apparently new energy from MiHsC). In going from the small to big universe, the minimum acceleration must decrease. In both cases there is a net acceleration towards the small universe which is proportional to: 1/SmallDiameter - 1/BigDiameter. The emdrive is very similar, except now the horizon is given by the shape of the cavity and the small and big universes are the small and big ends of it. Conclusion: the emdrive is an asymmetric universe for its photons.

As an aside, the higher minimum acceleration predicted by MiHsC in the
smaller universe, models a kind of inflation for the smaller early
universe, as needed by cosmology to explain the flatness problem.