I've suggested (& published in 21 journal papers) a new theory called quantised inertia (or MiHsC) that assumes that inertia is caused by horizons damping quantum fields. It predicts galaxy rotation & lab thrusts without any dark stuff or adjustment. My University webpage is here, I've written a book called Physics from the Edge and I'm on twitter as @memcculloch. Most of my content is at patreon now: here

Thursday, 23 March 2017

New Evidence at High Redshift

One of the unique and testable predictions of MiHsC / quantised inertia is that the dynamics of galaxies should depend on the size of the observable universe. This is because it predicts a cosmic minimum allowed acceleration of 2c^2/Cosmicscale. Why is this? Well, the Unruh waves seen by an object and that (in QI) cause its inertial mass, lengthen as the object's acceleration reduces and you can't have an acceleration that gives you Unruh waves that are too big to resonate in the cosmos. So if you imagine running the cosmos backwards, as the cosmic scale shrinks, more Unruh waves would be disallowed (as in the narrow end of the emdrive), inertial mass goes down, centrifugal forces decrease and so galaxies need faster rotation to be dynamically balanced. Therefore, QI predicts that in the past galaxies should have been forced to spin faster (everything else being equal).

Many people online alerted me to a paper that has just been published in Nature (Genzel et al., 2017) that supports this prediction. The paper looked at six massive galaxies so far away from us that we are looking at them many billions of years ago when the observable universe was much less than its present size, and, sure enough, they spin faster! To compare QI with the data, I have plotted the preliminary graph below.


It shows along the x axis the observed acceleration of these ancient galaxies, determined from Doppler measurements of their stars' orbital speed (a=v^2/r) and along the y axis the minimum acceleration predicted by quantised inertia (a=2c^2/cosmicscale). The QI vs observation comparison for the six galaxies is shown by the black squares and the numbers next to them show the redshift of each galaxy. The redshift (denoted Z) is a measurement of distance. Erwin Hubble found that the further away galaxies are from us, the faster they are receding from us, and so their light is stretched in a Doppler sense and is redshifted. So redshift is proportional to distance. The redshifts of the galaxies in this study ranged from Z=0.854, bottom left in the plot, at which the cosmos was 54% its present size to Z = 2.383, centre right, for which the cosmos was pretty cramped at 30% its present size (the formula for the size of the cosmos at redshift Z is SizeThen=SizeNow/(1+Z).

Quantised inertia predicts clearly that the acceleration increases with redshift, just as observed. The diagonal line shows where the points should lie if agreement was exact. Although the points are slightly above the line this is not a huge worry since the data is so uncertain. The uncertainty in the observed acceleration is probably something like 40% (looking at the scatter plots in Genzel et al. I've assumed a 20% error in the velocities they measured, and a=v^2/r). I have not plotted error bars yet because it'll take time to work out properly what they are. The two highest redshift galaxies are obviously quite aberrant, and this shows that the data is not yet good enough to be conclusive.

So in a preliminary way, and error-bars pending, the graph shows that QI predicts the newly-observed increase in galaxy rotation in the distant past. Given the uncertainties, more data is urgently needed to confirm this. As far as I know, quantised inertia is the only theory that predicted this observed behaviour.

References

Genzel et al., 2017. Nature, 543, 397–401 (16 March 2017) http://www.nature.com/nature/journal/v543/n7645/abs/nature21685.html

Wednesday, 22 March 2017

Plutophysia

Once upon a long time ago there was a land called Plutophysia and it was ruled by General R. Tivity. The General, in his salad days, had developed quite a reputation for predicting the weather, and indeed for some phenomena he had skill. When he had said "Today it will rain!" it always did. When he said "Go to the beach" everyone went.

Then one day a strange apparition appeared: a vast swirling column of wind and dust which knocked down a grain silo. The country folk came to the General and described the phenomenon. The General, with perfect confidence said
"Ah yes. It is caused by an invisible wind God: a Chindi!"
and he directed his scientists to look for these wind Gods. Egon, the lead scientist scratched his head, and then other parts of his body, as he tried to think. Nothing occurred to him. Eventually, some leaders of industry came to him and said
"We have a machine that can detect wind Gods, but it is very expensive".
"Never mind!" said Egon "I have the General's ear!"
"Having his purse would be better.." said the industrialists.
"The two are connected" said Egon and sure enough before long there was a fine industry building machines to detect the Wind Gods. This went on for some time, because invisible wind Gods are difficult to detect.

After several decades of waiting, the folk of Plutophysia became fed up since many farms had been torn apart by the phenomena. They were also tired of hearing the words 'wind God', and the scientists and industrialists were getting so fat that they had to carry them around in wheelbarrows. One day an unimpressive scruff from The Shire was brought in to see the old General and said
"General, I can predict these swirls of wind! They are caused by heating of air near the ground which rises".
The General said "What is this idiot babbling about? What are heat and air?".
But the scruff insisted
"I can predict they all occur at the hottest times. I have the data to prove it! Furthermore we can make flying machines based on this idea and move away to a better place..".
The General said "Enough!" and looked to his industrial advisors and top scientists.
"What say you to this young miscreant?".
They conferred "We would say sire that he is a dangerous lunatic and it would be best to lock him away from the general public lest your reputation for weather prediction be called into question."
The General decided quickly.
"Quite right. Guards! Put him in jail. Oh, and burn that data will you? Nasty profit-less stuff to have lying around".

Some wise people complained at this insult to free speech and scientific inquiry. Most eventually forgot about it so as not to lose their jobs in the wind-God detector machine factories. Some did not forget and also ended up in gaol. So Plutophysia spent all its money on the machines and was ruined. In the end all that was left was a huge ring of machines surrounding the broken farms, and a few old codgers living by the shattered remains of a prison, but building an air balloon..

Saturday, 18 March 2017

Horizon Drive 1.0

Horizons are a prediction of relativity. The first theoretical example was the idea of a black hole in which the gravity is so strong that light and therefore information cannot escape. So black holes are surrounded by an event horizon, a boundary between what can be seen and what can't: the inside. This horizon has not been seen directly, but the matter spiraling in towards the horizon emits heat due to friction (the accretion disc) and emits radiation, and that has been seen. Another kind of horizon occurs at the edge of the cosmos, since beyond that edge stars are moving away from us at a speed faster than light and so information from them cannot get to us: a cosmic horizon.

Lest you think that horizons are difficult to get to, I can assure you that there's no need to take part in a kamikaze mission into a black hole or to travel to the cosmic edge. Horizons are everywhere. If you accelerate to the right, then information from far to your left, limited to the speed of light, can't catch up with you, so a so-called Rindler horizon forms to your left. You can make your own horizon, at home, just by moving your hand. Quantised inertia comes from assuming that this horizon damps the zero point field, making it non-uniform and pulling your hand back against its initial acceleration. Quantum mechanics (zpf) and relativity (horizons) co-operate here to make quantised inertia which predicts inertial mass and, by the way, the 96% of the cosmos that standard physics cannot (see the orange bit in the pie chart below: an unsubtle way to make the point, but mainstream physics ignores this).

A common feature of all these horizons is that they attract. Black holes do by definition, though the evidence for them is not direct. The cosmic horizon also attracts everything towards it. Evidence for that was found by Riess and Perlmutter (1999): the famous cosmic acceleration (quantised inertia shows why). The Rindler horizon pulls you back against any acceleration and in this way, quantised inertia predicts inertial mass.

So, the obvious "spread-mankind-thru-the-galaxy" question is, can we make synthetic horizons wherever we want and make spaceships move without fuel? I think so. The first evidence I can mention to back this up is the Casimir effect, which was first demonstrated practically in 1997 by Lamoreaux. Two parallel metal plates act as horizons, damping the zero point field (zpf) between them so there's less zpf pushing out and more zpf outside pushing them together. Energy and movement from what was supposed to be 'nothing'. In my opinion the emdrive is the second example. My evidence for that is that quantised inertia predicts it by assuming that the metal walls of the cavity damp the zero point field more at its narrow end, so the cavity moves that way, almost as if it is moving down a hill. Quantised inertia (QI, MiHsC) predicts the observed thrusts well.

It is important to note that you can't use any old cavity here. If you want to change the inertial mass, or move, an object, then the metal shape you use must be of a size that damps the wavelength of the Unruh waves that the object will see. The higher the acceleration, the shorter the waves. In the emdrive the photons are accelerating so fast that the Unruh waves they see are of similar size to the cavity. If you put a snail in there, or indeed anything travelling at sub-light speed, they'll see Unruh waves far longer than the cavity and there'll be no effect on their inertia or motion. Most accelerations we know about 'see' Unruh waves light years long (associated with horizons light-years away) so to make a horizon drive you need to have a part of the engine hyper-accelerated (the acceleration core, see circle on the right, in the schematic below) and a metal structure to damp Unruh waves asymmetrically. This 'damper' is the structure on the left and it could be fractal, as shown, to damp Unruh waves across a greater range of accelerations. The core is predicted by QI to move left:

The emdrive does this with photons resonating back and forth, but there are many other possible ways to make a hyper-accelerated core: spinning discs, photons in fibre-optic loops (LEMdrive), plasmons propagating round sharp corners, electron jumps at superconducting transitions (Podkletnov, Poher), even sonoluminescence. Practical physicists will know of many more possibilities. You then just need an asymmetrical metal structure of the right size to damp the Unruh field and the core will move anomalously.

Quantised inertia predicts a entirely new field of horizon engineering. Ultimately it may provide technology like the space-time engineering used to build The Way in Greg Bear's brilliant novel Eon. Nature in my view is not made of old-fashioned waves and particles, but of information and horizons and the evidence is pilling up that this is true (see my papers).

References

McCulloch, M.E., 2013. Inertia from an asymmetric Casimir effect. EPL, 101, 59001 (see discussion). https://arxiv.org/abs/1302.2775

Sunday, 12 March 2017

Strings, loops and quantised inertia

I've just read an interesting, but ultimately unsatisfying article in New Scientist about string theory and loop quantum gravity and how these two theories might agree with each other. This agreement may be a great mathematical achievement, but it is only that, because neither theory is testable.

I have blogged about string theory before (here). It imagines every particle in nature is made of a string (in 11-dimensions) and the waves on the string determine the properties of the particle. I admire its ambition, since it tries to explain all the particles, including the graviton, the particle assumed to be responsible for gravity, and tries to be a theory of everything, but it is really a theory of nothing, since it has so many variations you can pick whatever version agrees with what you are looking at, and it makes no specific testable predictions. The one sort-of prediction made, supersymmetry, has now been falsified by the LHC (see here).

Loop quantum gravity is the other popular theory and it is simpler and bolder. A great simplification of Einstein was that he made space-time dependent on the mass within it. A bit like making the stage one of the actors in a play. He did this because space-time is something you cannot directly see anyway, so it's fair game for tweaking and this process means that general relativity is neatly 'background independent': the background space-time is determined by the mass. Loop quantum gravity continues this simplification by saying that spacetime is quantised and so, as in commercial airflight, there is a minimum distance you can travel. Loop quantum gravity is neat but has not yet made a good testable prediction. In the article they claim bouncing black holes might be a test, and there are a lot of 'may's and 'might's, but this is not the same as a controllable lab test: how can you be sure you are seeing a bouncing black hole from afar and not a million other possibilities?

Neither of these theories address the huge observations anomalies we can see including anomalous galaxy rotation and cosmic acceleration which are crying out for attention. Both theories focus on the big bang and distant black holes, as if they are afraid of a more down-to-Earth test. Common sense says we need to learn to fix the bathroom tap (eg: galaxy rotation, flybys, emdrive) before we tackle the plumbing on Pluto (eg: the big bang and black holes).

There is a theory that in some sense looks a bit like both these, but it has not come from a theoretical approach. It has come from paying attention to the anomalous observations that the mainstream ignore. This theory is MiHsC/quantised inertia/horizon mechanics (three names, take your pick!). In this theory, incomplete as yet, particle properties (inertial mass) depend on whether the Unruh waves they can see fit inside horizons. This is similar to string theory's waves on strings, but without needing to invent new waves and seven new dimensions! Quantised inertia also has the background independence of loop quantum gravity in that the behaviour of masses determines their space: an observer's acceleration creates horizons that determine what space is for that observer and that leads back to mass. Plus quantised inertia has no lack of tests, predicting galaxy rotation, its redshift dependence and cosmic acceleration perfectly and simply.

In summary, the New Scientist article is interesting and informative, but far too theoretical, as is all of mainstream physics. Too much theory is a mistake: history shows that new physics always comes from thinking about new observations, because the cosmos' imagination is far better than man's.

References

Cartright, J., 2017. When loops become strings. New Scientist, 11th March 2017.