The best way to move forward in science is to find specific anomalies, with numbers attached to them, that theories can be tested against, and this morning I'm very grateful to Frank Becker and John Dorman who tweeted to me about an exciting paper just published in Nature. I say it is exciting, but it's hidden behind a paywall. However, from what I can see from other sources the authors (see references below) have managed to look in detail at a very early galaxy, cleverly using gravitational lensing: using a foreground galaxy which bends the light from a galaxy far distant (and way in the past) in such a way that it magnifies the background image. Thus they have inspected an ancient galaxy at a redshift of Z=2.1478, ten billion years ago when the cosmos was only one third its present size. The only other details I have are that it is half the radius of the Milky Way and has a rotation rate at its edge of 350+/-150 km/s (error bars taken from their Fig. 2). They note that this is very odd and unexpected, why is it spinning so fast! Quantised inertia can explain it.
Quantised inertia predicts that there is a minimum acceleration in the cosmos, given by 2c^2/T, where c is the speed of light and T is the co-moving cosmic diameter. In the far distant past, at a redshift of 2.1478 when the universe was about a third the size it is today, T would be a third the size, so the minimum acceleration should have been three times what it is today. So quantised inertia forces ancient galaxies to spin fast. Do the numbers agree then?
To check this at first order all you have to do is say that the acceleration of this ancient galaxy at its edge (where it is slowest) must be above the QI minimum of 2c^2/T and since acceleration is given by v^2/r where r is the radius, we get v^2/r > 2c^2/T and so v=sqrt(2c^2r/T). If we take the very crude estimates in the secondary sources that this galaxy is half the radius of the Milky Way, then QI predicts a speed of v=538+/-75 km/s which agrees with the observed speed (given the error bars). Admittedly I haven't even read the paper yet (as I said, I can't access it for free), but high redshift data is providing great evidence for quantised inertia, because quantised inertia, alone among theories, predicts a specific change in dynamics with cosmic time and it is just now becoming possible with studies like this one, to check this out. I have been trying to publish a paper on this and it has been rejected six times but is now undergoing a more positive review at ApSS. The paper uses six other early galaxies, which also spin fast in agreement with QI. So thank goodness for the finite speed of light since it makes a very useful time portal out of the night sky.
"What seest thou else in the dark backward and abysm of time?" - Shakespeare, The Tempest.
PS: I now have a copy of the paper. Thank you to those kind folks who sent one.
References
Sune Toft, Johannes Zabl, Johan Richard, Anna Gallazzi, Stefano Zibetti, Moire Prescott, Claudio Grillo, Allison W. S. Man, Nicholas Y. Lee, Carlos Gómez-Guijarro, Mikkel Stockmann, Georgios Magdis, Charles L. Steinhardt. A massive, dead disk galaxy in the early Universe. Nature, 2017; 546 (7659): 510. https://www.nature.com/nature/journal/v546/n7659/full/nature22388.html