I've suggested (& published in 21 journal papers) a new theory called quantised inertia (or MiHsC) that assumes that inertia is caused by horizons damping quantum fields. It predicts galaxy rotation & lab thrusts without any dark stuff or adjustment. My University webpage is here, I've written a book called Physics from the Edge and I'm on twitter as @memcculloch. Most of my content is at patreon now: here

Thursday 26 June 2014

Energy from nothing

I'm often asked "What is the use of MiHsC?" The accelerations it predicts are laughably tiny so why bother? Well, I can argue about it being an alternative to dark matter and dark energy, questions that are important to me, but as a friend of mine used to say, "how does that put fuel in my tank?". The importance of MiHsC for applications is that it points to a new way to produce energy from what physicists previously thought was an untapable source: the zero point field (aka nothing). This is rather like the earlier discovery that you can get usable energy out of heat: the steam engine. Today, just as before the steam engine, a hugely important part of the world is not taken seriously by physics: in this case information and the zero point field.

One way to think about MiHsC is as follows. When an object, say a spaceship, is accelerated by an external force, like gravity, a Rindler horizon forms in the direction opposite to the acceleration vector, because information cannot hope to catch up to the craft from behind that horizon. MiHsC says that this information horizon also has other consequences, because to make it an impermeable boundary for information, all the patterns in the object's accelerated reference frame must 'close' at that boundary, otherwise a partial pattern would enable us on the spaceship to predict something about what lies beyond the horizon. Unruh waves are a pattern and they are therefore suddenly damped on the horizon side of the object since only Unruh waves that 'close' at the new horizon remain. There are now more Unruh waves (more zero point field energy) in the direction of the acceleration. The previously uniform (and untappable) zero point field now performs work as the object is pushed back against the acceleration because more virtual particles from the zero point field bang into it from the direction of its acceleration than the other side. This process looks just like inertia (see the reference below). In other words, the formation of an information horizon, transfers energy from the zero point field (a formerly abstract kind of energy) into the real world.

In 1948 Casimir predicted that metal plates would produce a force or energy from the zero point field, which has now been observed. I predict that setting up an information horizon will also enable us to tap the zero point energy. As evidence, I can say that MiHsC predicts galaxy rotation without dark matter and cosmic acceleration in just this way, and I think that experiments such as Podkletnov's tapped the zero point field like this, accidentally, using highly accelerated discs to produce Rindler horizons that also affected suspended masses. I do not yet have a complete picture, but a useful new physics is apparent through the mist (Introduction to MiHsC).

McCulloch, M.E., 2013. Inertia from an asymmetric Casimir effect. EPL, 101, 59001. Preprint


conundrum said...

Interesting concept.
I haven't heard of information horizons before, is it similar to an event horizon or are the terms interchangeable?

Mike McCulloch said...

Yes, just like a black hole event horizon, but Rindler horizons (RHs) are caused by an object's acceleration instead of gravity. The term information horizons covers both kinds. RHs are only apparent to the accelerated object and an outside observer would see nothing.